A Non-commutative Cryptosystem Based on Quaternion Algebras
نویسندگان
چکیده
We propose BQTRU, a non-commutative NTRU-like cryptosystem over quaternion algebras. This cryptosystem uses bivariate polynomials as the underling ring. The multiplication operation in our cryptosystem can be performed with high speed using quaternions algebras over finite rings. As a consequence, the key generation and encryption process of our cryptosystem is faster than NTRU in comparable parameters. Typically using Strassen’s method, the key generation and encryption process is approximately 16/7 times faster than NTRU for an equivalent parameter set. Moreover, the BQTRU lattice has a hybrid structure that makes inefficient standard lattice attacks on the private key. This entails a higher computational complexity for attackers providing the opportunity of having smaller key sizes. Consequently, in this sense, BQTRU is more resistant than NTRU against known attacks at an equivalent parameter set. Moreover, message protection is feasible through larger polynomials and this allows us to obtain the same security level as other NTRU-like cryptosystems but using lower dimensions.
منابع مشابه
QTRU: quaternionic version of the NTRU public-key cryptosystems
In this paper we will construct a lattice-based public-key cryptosystem using non-commutative quaternion algebra, and since its lattice does not fully fit within Circular and Convolutional Modular Lattice (CCML), we prove it is arguably more secure than the existing lattice-based cryptosystems such as NTRU. As in NTRU, the proposed public-key cryptosystem relies for its inherent securi...
متن کاملCommutative pseudo BE-algebras
The aim of this paper is to introduce the notion of commutative pseudo BE-algebras and investigate their properties.We generalize some results proved by A. Walendziak for the case of commutative BE-algebras.We prove that the class of commutative pseudo BE-algebras is equivalent to the class of commutative pseudo BCK-algebras. Based on this result, all results holding for commutative pseudo BCK-...
متن کاملIdentifying the Matrix Ring: Algorithms for Quaternion Algebras and Quadratic Forms
We discuss the relationship between quaternion algebras and quadratic forms with a focus on computational aspects. Our basic motivating problem is to determine if a given algebra of rank 4 over a commutative ring R embeds in the 2 × 2-matrix ring M2(R) and, if so, to compute such an embedding. We discuss many variants of this problem, including algorithmic recognition of quaternion algebras amo...
متن کاملQTRU:Quaternionic Version of theNTRUPublic-Key Cryptosystems
In this paper we will construct a lattice-based public-key cryptosystem using non-commutative quaternion algebra, and since its lattice does not fully fit within Circular and Convolutional Modular Lattice (CCML), we prove it is arguably more secure than the existing lattice-based cryptosystems such as NTRU. As in NTRU, the proposed public-key cryptosystem relies for its inherent security on the...
متن کاملWhy quaternion algebras have rank 4 Darij Grinberg
1. The statement This brief note is devoted to a simple (and well-known) result in noncommutative algebra, which is not deep but nevertheless subtler than it appears. It concerns the so-called quaternion algebras: Definition 1.1. Let k be a commutative ring1. Let a ∈ k and b ∈ k. The quaternion algebra Ha,b is defined to be the k-algebra with generators i and j and relations i2 = a, j2 = b, ij ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1709.02079 شماره
صفحات -
تاریخ انتشار 2017